Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
À partir d’avant-hierFlux principal

How AI Assistants Can Decode GitHub Repos for UI Writers

Par : Docker Labs
16 décembre 2024 à 14:19

This ongoing Docker Labs GenAI series explores the exciting space of AI developer tools. At Docker, we believe there is a vast scope to explore, openly and without the hype. We will share our explorations and collaborate with the developer community in real time. Although developers have adopted autocomplete tooling like GitHub Copilot and use chat, there is significant potential for AI tools to assist with more specific tasks and interfaces throughout the entire software lifecycle. Therefore, our exploration will be broad. We will be releasing software as open source so you can play, explore, and hack with us, too.

Can an AI-powered assistant understand a GitHub repo enough to answer questions for UI writers?

2400x1260 docker labs genai

Across many projects, user-facing content is rendered based on some sort of client-side code. Whether a website, a game, or a mobile app, it’s critical to nail the text copy displayed to the user.

So let’s take a sample question: Do any open PRs in this project need to be reviewed for UI copy? In other words, we want to scan a GitHub repo’s PRs and gain intelligence about the changes included.

Disclaimer: The best practice to accomplish this at a mature organization would be to implement Localization (i18n), which would facilitate centralized user-facing text. However, in a world of AI-powered tools, we believe our assistants will help minimize friction for all projects, not just ones that have adopted i18n.

So, let’s start off by seeing what options we already have.

The first instinct someone might have is to open the new copilot friend in the GitHub nav

genai series 13 f1
Figure 1: Type / to search.

We tried to get it to answer basic questions, first: “How many PR’s are open?”

genai series 13 f2
Figure 2: How many PR’s are there open? The answer doesn’t give a number.

Despite having access to the GitHub repo, the Copilot agent provides less helpful information than we might expect.

genai series 13 f3
Figure 3: Copilot is powered by AI, so mistakes are possible.

We don’t even get a number like we asked, despite GitHub surfacing that information on the repository’s main page. Following up our first query with the main query we want to ask effectively just gives us the same answer

genai series 13 f4
Figure 4: The third PR is filesharing: add some missing contexts.

And, after inspecting the third PR in the list, it doesn’t contain user-facing changes. One great indicator for this web project is the lack of any clientside code being modified. This was a backend change so we didn’t want to see this one.

genai series 13 f5
Figure 5: The PR doesn’t contain user-facing changes.

So let’s try to improve this:

First prompt file

---
functions:
  - name: bash
	description: Run a bash script in the utilities container.
	parameters:
  	  type: object
  	  properties:
    	    command:
      	      type: string
      	description: The command to send to bash
	container:
    	  image: wbitt/network-multitool  
    	  command:
      	    - "bash"
      	    - "-c"
      	    - "{{command|safe}}"
  - name: git
	description: Run a git command.
	parameters:
  	  type: object
  	  properties:
    	    command:
      	      type: string
      	description: The git command to run, excluding the `git` command itself
	container:
  	  image: alpine/git
  	  entrypoint:
    	    - "/bin/sh"
  	  command:
    	    - "-c"
    	    - "git --no-pager {{command|safe}}"
---

# prompt system

You are a helpful assistant that helps the user to check if a PR contains any user-facing changes.

You are given a container to run bash in with the following tools:

  curl, wget, jq
and default alpine linux tools too.

# prompt user
You are at $PWD of /project, which is a git repo.

Checkout branch `{{branch}}`.

Diff the changes and report any containing user facing changes

This prompt was promising, but it ended up with a few blocking flaws. The reason is that using git to compare files is quite tricky for an LLM.

  • git diff uses a pager, and therefore needs the --no-pager arg to send stdout to the conversation.
  • The total number of files affected via git diff can be quite large.
  • Given each file, the raw diff output can be massive and difficult to parse.
  • The important files changed in a PR might be buried with many extra files in the diff output.
  • The container has many more tools than necessary, allowing the LLM to hallucinate.

The agent needs some understanding of the repo to determine the sorts of files that contain user-facing changes, and it needs to be capable of seeing just the important pieces of information.

Our next pass involves a few tweaks:

  • Switch to alpine git image and a file writer as the only tools necessary.
  • Use –files-only and –no-pager args.
# ROLE assistant


The following files are likely to contain user-facing changes as they mainly consist of UI components, hooks, and API functionalities.

```
file1.ts
fil2.tsx
file3.tsx
...
```
Remember that this isn't a guarantee of whether there are user-facing changes, but just an indication of where they might be if there are any.

Remember that this isn’t a guarantee of whether there are user-facing changes, but just an indication of where they might be if there are any.

Giving the agent the tool run-javascript-sandbox allowed our agent to write a script to save the output for later.

genai series 13 f6
Figure 6: Folder called user-changes with files.txt.

To check out the final prompt here, use our Gist.

Expert knowledge

This is a great start; however, we now need to inspect the files themselves for user-facing changes. When we started this, we realized that user-facing changes could manifest in a diverse set of “diff”s so we needed to include expert knowledge. We synced up with Mark Higson, a staff SWE currently working on the frontend platform here at Docker. Mark was able to help provide some key advice for what “user-facing” changes look like in many repos at Docker, so I baked the tips into the prompt.

Straightforward approaches

Looking for changes in text nodes found in a JSX tree is the easiest example.

JSX node with interpolation

<div>{functionReturningString()}</div>

If the result is a string, the result is probably user-facing, but the components that create the string could be elsewhere, so look for:

Nuanced indicators

  • Standard user-facing components. Example: notifications. If a notification’s props change, we can likely infer that it is a user-facing change.
  • Constructors for commonly used components. Example: errors. If an Error() is constructed with a different argument, we know that error could show up differently.

The key for UI reviewers is the overall amount of text is changed, rather than layout.

So, despite not being able to catch everything that could be rendered, we will be able to deliver value by focusing on these areas.

Diffing the files

There are a few approaches to finding changes in the files. To start, we’ll use git again.

Before including expert advice, git diff was hallucinating changes that weren’t actually represented in the output. After the expert advice, we are seeing much more focused outputs from the LLM.

Our second prompt just needs to read the user-facing files that we already saved, and then compare them to main. After a bit of trial and error with git, we found that a combination of --no-color and --minimal was able to give the LLM enough context without consuming too many tokens for each change.

There’s a lot of buzz around generating and reading diffs with LLMs. The teams at Aider and Cursor are both focusing on fine-tuning LLM’s using speculative decoding:

For our use cases, however, we found that the average “big” PR at Docker was not a problem for traditional LLMs when given good advice and the right tools.

So here’s the second prompt:

## User-facing content

The following pieces of code are what we want to focus on for user-facing content:

Text Nodes in any JSX or TSX files.

Text Nodes in any HTML files.

Standard user-facing components. Example: Definitions/Constructors for notifications, toasts, and errors.

# prompt user

Can you tell me if there are any user-facing changes in {{branch}}?

To check out the full prompt here, use our Gist.

Output

Note: Some full paths, branches, and diffs are trimmed or replaced with placeholders for this article.

# ROLE assistant

```json
{
  "args": ["checkout", "branch"]
}
```

# ROLE tool (git)


Already on 'branch'
Your branch is up to date with 'origin/branch'.

# ROLE assistant

```json
{
  "path": "/thread/user-changes/files.txt"
}
```

*entering tool*

# ROLE tool (read-file)

path1
path2
path3
...rest of paths

# ROLE assistant

```json
{
  "args": ["diff", "main", "--no-color", "--minimal", path1 path2 path3...]
}
```

*entering tool*

# ROLE tool (git)

<Diff output truncated>
# ROLE assistant

The following user-facing changes were detected between the "main" branch and the "branch" branch:

1. In `File1.tsx` file, the text "Sign In" was modified to "Sign in".

2. In `File2.ts` file, titles "Databases & Storage", "Monitoring & Observability", "Developer Tools", "New Extensions", were changed to "Databases & storage", "Monitoring & observability", "Developer tools", "New extensions" respectively.

3. In `File3.rtl.test.tsx.snap` and `ImageHeader/index.tsx files`, the text "Compressed Size " was changed to "Compressed size".

4. In `File4.rtl.test.tsx` and `ImageDetail/index.tsx files`, a test-case previously checking for the existence of "Compressed Size" now looks for "Compressed size".

5. In `File5.tsx file`, the button text "Add Collaborator" has been changed to "Add collaborator".

6. In `route.tsx file`, the collaborators table title "Current Collaborators" was changed to "Current collaborators".

7. In `File6.tsx` file, the description was updated.

8. In `File7.tsx`, `RepositoryOverview.tsx`, `RepositoryReadMe.tsx`, `TagsAndScans.tsx` files, the description when there is no category or description was updated.

9. In `File8.rtl.test.tsx`, `DeleteRepo.tsx`, the text for confirming repo deletion and the delete button text was adjusted.

10. In `route.tsx file`, the filter label "Trusted Content" was changed to "Trusted content".

11. In `File9.tsx`, the text "Your Organizations" has been changed to "Your organizations".

12. In `Component/index.tsx`, the search group label "Trusted Content" has been changed to "Trusted content".

13. In `file10.test.ts` file, a test-case was updated to check for the new text "Sign in".
```

Overall, this was a positive result:

genai series 13 f7
Figure 7: Mark’s response “Damn, that’s nice output (assuming it’s accurate).”

Follow up:

genai series 13 f8
Figure 8: Mark’s response, “I checked, it’s accurate.”

Another example from a different PR:

The changes in the `branch` branch compared to `main` include several modifications that affect user-facing content, particularly in JSX and TSX files. Here is a summary of the key changes:

...

These changes primarily involve simplification and refactoring of the existing UI logic, possibly to streamline the user interaction by removing complexities related to feature flags and reducing the use of modals or conditional rendering for specific purchasing flows.

Try it yourself

Here is a markdown file that you can paste into VSCode to try these prompts on your own branch. In the last line, update my-branch to one of your local branches that you’d like to review: https://gist.github.com/ColinMcNeil/2e8f25e2d4092f3c7a0ce8992d2e197c#file-readme-md

Next steps

This is already a promising flow. For example, a tech writer could clone the git repo and run this prompt to inspect a branch for user-facing changes. From here, we might extend the functionality:

  • Allow user input for PR to review without knowing the branch or git needing to use git.
  • Automatic git clone & pull with auth.
  • Support for larger >15 files changed PR by allowing agents to automate their tasks.
  • “Baking” the final flow into CI/CD so that it can automatically assign reviewers to relevant PRs.

If you’re interested in running this prompt on your own repo or just want to follow along with the code, watch our new public repo and reach out. We also appreciate your GitHub Stars.

Everything we’ve discussed in this blog post is available for you to try out on your own projects. 

For more on what we’re doing at Docker, subscribe to our newsletter.

Learn more

Accelerating AI Development with the Docker AI Catalog

12 novembre 2024 à 14:38

Developers are increasingly expected to integrate AI capabilities into their applications but they also face many challenges. Namely, the steep learning curve, coupled with an overwhelming array of tools and frameworks, makes this process too tedious. Docker aims to bridge this gap with the Docker AI Catalog, a curated experience designed to simplify AI development and empower both developers and publishers.

2400x1260 generic hub blog f

Why Docker for AI?

Docker and container technology has been a key technology used by developers at the forefront of AI applications for the past few years. Now, Docker is doubling down on that effort with our AI Catalog. Developers using Docker’s suite of products are often responsible for building, deploying, and managing complex applications — and, now, they must also navigate generative AI (GenAI) technologies, such as large language models (LLMs), vector databases, and GPU support.

For developers, the AI Catalog simplifies the process of integrating AI into applications by providing trusted and ready-to-use content supported by comprehensive documentation. This approach removes the hassle of evaluating numerous tools and configurations, allowing developers to focus on building innovative AI applications.

Key benefits for development teams

The Docker AI Catalog is tailored to help users overcome common hurdles in the evolving AI application development landscape, such as:

  • Decision overload: The GenAI ecosystem is crowded with new tools and frameworks. The Docker AI Catalog simplifies the decision-making process by offering a curated list of trusted content and container images, so developers don’t have to wade through endless options.
  • Steep learning curve: With the rise of new technologies like LLMs and retrieval-augmented generation (RAG), the learning curve can be overwhelming. Docker provides an all-in-one resource to help developers quickly get up to speed.
  • Complex configurations preventing production readiness: Running AI applications often requires specialized hardware configurations, especially with GPUs. Docker’s AI stacks make this process more accessible, ensuring that developers can harness the full power of these resources without extensive setup.

The result? Shorter development cycles, improved productivity, and a more streamlined path to integrating AI into both new and existing applications.

Empowering publishers

For Docker verified publishers, the AI Catalog provides a platform to differentiate themselves in a crowded market. Independent software vendors (ISVs) and open source contributors can promote their content, gain insights into adoption, and improve visibility to a growing community of AI developers.

Key features for publishers include:

  • Increased discoverability: Publishers can highlight their AI content within a trusted ecosystem used by millions of developers worldwide.
  • Metrics and insights: Verified publishers gain valuable insights into the performance of their content, helping them optimize strategies and drive engagement.

Unified experience for AI application development

The AI Catalog is more than just a repository of AI tools. It’s a unified ecosystem designed to foster collaboration between developers and publishers, creating a path forward for more innovative approaches to building applications supported by AI capabilities. Developers get easy access to essential AI tools and content, while publishers gain the visibility and feedback they need to thrive in a competitive marketplace.

With Docker’s trusted platform, development teams can build AI applications confidently, knowing they have access to the most relevant and reliable tools available.

The road ahead: What’s next?

Docker will launch the AI Catalog in preview on November 12, 2024, alongside a joint webinar with MongoDB. This initiative will further Docker’s role as a leader in AI application development, ensuring that developers and publishers alike can take full advantage of the opportunities presented by AI tools.

Stay tuned for more updates and prepare to dive into a world of possibilities with the Docker AI Catalog. Whether you’re an AI developer seeking to streamline your workflows or a publisher looking to grow your audience, Docker has the tools and support you need to succeed.

Ready to simplify your AI development process? Explore the AI Catalog and get access to trusted content that will accelerate your development journey. Start building smarter, faster, and more efficiently.

For publishers, now is the perfect time to join the AI Catalog and gain visibility for your content. Become a trusted source in the AI development space and connect with millions of developers looking for the right tools to power their next breakthrough.

Learn more

Using AI Tools to Convert a PDF into Images

Par : Docker Labs
4 novembre 2024 à 14:01

This ongoing Docker Labs GenAI series explores the exciting space of AI developer tools. At Docker, we believe there is a vast scope to explore, openly and without the hype. We will share our explorations and collaborate with the developer community in real time. Although developers have adopted autocomplete tooling like GitHub Copilot and use chat, there is significant potential for AI tools to assist with more specific tasks and interfaces throughout the entire software lifecycle. Therefore, our exploration will be broad. We will be releasing software as open source so you can play, explore, and hack with us, too.

How do you turn a PDF into a set of images? A modern suggestion could be to get Claude or GPT to write you a CLI command for something like ImageMagick. Let’s follow that train of thought.

2400x1260 docker labs genai

If we enter a prompt like “How do I turn a PDF into a bunch of images using ImageMagick,” we will indeed get something that looks like it might be a solution.

Imagemagick includes a command-line tool called convert which you can use to convert PDF files into images. Here's how you can do it:

1. Open your terminal

2. Change directory to where your PDF is located:

```
cd /path/to/your/pdf

```
3. Use the following command to convert the PDF into images (in this case JPEG):

```
convert -density 300 -quality 100 your_file.pdf output_name.jpg

``` 

The agent will then explain how convert works and finish with a suggestion to “please make sure that you have installed ImageMagick before running these commands.”

Instead of worrying about whether ImageMagick is installed, however, let’s use Docker as our tool provider and prompt it to go ahead and run the command. If you’re following along in this series, you’ll have seen that we are using Markdown files to mix together tools and prompts.  Here’s the first prompt we tried:

---
tools:
  - name: imagemagick
---
# prompt user

Use Imagemagick to convert the family.pdf file into a bunch of jpg images.

After executing this prompt, the LLM generated a tool call, which we executed in the Docker runtime, and it successfully converted family.pdf into nine .jpg files (my family.pdf file had nine pages). 

Figure 1 shows the flow from our VSCode Extension.

Animated VSCode workflow showing the process of converting PDFs to images.
Figure 1: Workflow from VSCode Extension.

We have given enough context to the LLM that it is able to plan a call to this ImageMagick binary. And, because this tool is available on Docker Hub, we don’t have to “make sure that ImageMagick is installed.” This would be the equivalent command if you were to use docker run directly:

# family.pdf must be located in your $PWD

docker run --rm -v $PWD:/project --workdir /project vonwig/imageMagick:latest convert -density 300 -quality 300 family.pdf family.jpg 

The tool ecosystem

How did this work? The process relied on two things:

  • Tool distribution and discovery (pulling tools into Docker Hub for distribution to our Docker Desktop runtime).
  • Automatic generation of Agent Tool interfaces.

When we first started this project, we expected that we’d begin with a small set of tools because the interface for each tool would take time to design. We thought we were going to need to bootstrap an ecosystem of tools that had been prepared to be used in these agent workflows. 

However, we learned that we can use a much more generic approach. Most tools already come with documentation, such as command-line help, examples, and man pages. Instead of treating each tool as something special, we are using an architecture where an agent responds to failures by reading documentation and trying again (Figure 2).

Illustration of circular process showing "Run tool" leading to "Capture errors" leading to "Read docs" in a continuous loop.
Figure 2: Agent process.

We see a process of experimenting with tools that is not unlike what we, as developers, do on the command line. Try a command line, read a doc, adjust the command line, and try again.

The value of this kind of looping has changed our expectations. Step one is simply pulling the tool into Docker Hub and seeing whether the agent can use it with nothing more than its out-of-the-box documentation. We are also pulling open source software (OSS)  tools directly from nixpkgs, which gives us access to tens of thousands of different tools to experiment with. 

Docker keeps our runtimes isolated from the host operating system, while the nixpkgs ecosystem and maintainers provide a rich source of OSS tools.

As expected, packaging agents still run into issues that force us to re-plan how tools are packaged. For example, the prompt we showed above might have generated the correct tool call on the first try, but the ImageMagick container failed on the first run with this terrible-looking error message:

function call failed call exited with non-zero code (1): Error: sh: 1: gs: not found  

Fortunately, feeding that error back into the LLM resulted in the suggestion that convert needs another tool, called Ghostscript, to run successfully. Our agent was not able to fix this automatically today. However, we adjusted the image build slightly and now the “latest” version of the vonwig/imagemagick:latest no longer has this issue. This is an example of something we only need to learn once.

The LLM figured out convert on its own. But its agency came from the addition of a tool.

Read the Docker Labs GenAI series to see more of what we’ve been working on.

Learn more

Using Docker AI Tools for Devs to Provide Context for Better Code Fixes

Par : Docker Labs
21 octobre 2024 à 13:00

This ongoing Docker Labs GenAI series explores the exciting space of AI developer tools. At Docker, we believe there is a vast scope to explore, openly and without the hype. We will share our explorations and collaborate with the developer community in real-time. Although developers have adopted autocomplete tooling like GitHub Copilot and use chat, there is significant potential for AI tools to assist with more specific tasks and interfaces throughout the entire software lifecycle. Therefore, our exploration will be broad. We will be releasing software as open source so you can play, explore, and hack with us, too.

At Docker Labs, we’ve been exploring how LLMs can connect different parts of the developer workflow, bridging gaps between tools and processes. A key insight is that LLMs excel at fixing code issues when they have the right context. To provide this context, we’ve developed a process that maps out the codebase using linting violations and the structure of top-level code blocks. 

By combining these elements, we teach the LLM to construct a comprehensive view of the code, enabling it to fix issues more effectively. By leveraging containerization, integrating these tools becomes much simpler.

2400x1260 docker labs genai

Previously, my linting process felt a bit disjointed. I’d introduce an error, run Pylint, and receive a message that was sometimes cryptic, forcing me to consult Pylint’s manual to understand the issue. When OpenAI released ChatGPT, the process improved slightly. I could run Pylint, and if I didn’t grasp an error message, I’d copy the code and the violation into GPT to get a better explanation. Sometimes, I’d ask it to fix the code and then manually paste the solution back into my editor.

However, this approach still required several manual steps: copying code, switching between applications, and integrating fixes. How might we improve this process?

Docker’s AI Tools for Devs prompt runner is an architecture that allows us to integrate tools like Pylint directly into the LLM’s workflow through containerization. By containerizing Pylint and creating prompts that the LLM can use to interact with it, we’ve developed a system where the LLM can access the necessary tools and context to help fix code issues effectively.

Understanding the cognitive architecture

For the LLM to assist effectively, it needs a structured way of accessing and processing information. In our setup, the LLM uses the Docker prompt runner to interact with containerized tools and the codebase. The project context is extracted using tools such as Pylint and Tree-sitter that run against the project. This context is then stored and managed, allowing the LLM to access it when needed.

By having access to the codebase, linting tools, and the context of previous prompts, the LLM can understand where problems are, what they are, and have the right code fragments to fix them. This setup replaces the manual process of finding issues and feeding them to the LLM with something automatic and more engaging.

Streamlining the workflow

Now, within my workflow, I can ask the assistant about code quality and violations directly. The assistant, powered by an LLM, has immediate access to a containerized Pylint tool and a database of my code through the Docker prompt runner. This integration allows the LLM to use tools to assist me directly during development, making the programming experience more efficient.

This approach helps us rethink how we interact with our tools. By enabling a conversational interface with tools that map code to issues, we’re exploring possibilities for a more intuitive development experience. Instead of manually finding problems and feeding them to an AI, we can convert our relationship with tools themselves to be conversational partners that can automatically detect issues, understand the context, and provide solutions.

Walking through the prompts

Our project is structured around a series of prompts that guide the LLM through the tasks it needs to perform. These prompts are stored in a Git repository and can be versioned, tracked, and shared. They form the backbone of the project, allowing the LLM to interact with tools and the codebase effectively. We automate this entire process using Docker and a series of prompts stored in a Git repository. Each prompt corresponds to a specific task in the workflow, and Docker containers ensure a consistent environment for running tools and scripts.

Workflow steps

An immediate and existential challenge we encountered was that this class of problem has a lot of opportunities to overwhelm the context of the LLM. Want to read a source code file? It has to be small enough to read. Need to work on more than one file? Your realistic limit is three to four files at once. To solve this, we can instruct the LLM to automate its own workflow with tools, where each step runs in a Docker container.

Again, each step in this workflow runs in a Docker container, which ensures a consistent and isolated environment for running tools and scripts. The first four steps prepare the agent to be able to extract the right context for fixing violations. Once the agent has the necessary context, the LLM can effectively fix the code issues in step 5.

1. Generate violations report using Pylint:

Run Pylint to produce a violation report.

2. Create a SQLite database:

Set up the database schema to store violation data and code snippets.

3. Generate and run INSERT statements:

  • Decouple violations from the range they represent.
  • Use a script to convert every violation and range from the report into SQL insert statements.
  • Run the statements against the database to populate it with the necessary data.

4. Index code in the database:

  • Generate an abstract syntax tree (AST) of the project with Tree-sitter (Figure 1).
Screenshot of syntax tree, showing files, with detailed look at Example .py.parsed.
Figure 1: Generating an abstract syntax tree.
  • Find all second-level nodes (Figure 2). In Python’s grammar, second-level nodes are statements inside of a module.
Expanded look at Example .py.parsed with highlighted statements.
Figure 2: Extracting content for the database.
  • Index these top-level ranges into the database.
  • Populate a new table to store the source code at these top-level ranges.

5. Fix violations based on context:

Once the agent has gathered and indexed the necessary context, use prompts to instruct the LLM to query the database and fix the code issues (Figure 3).

Illustration of instructions, for example, to "fix the violation "some violation" which occurs in file.py on line 1" with information on the function it occurs in.
Figure 3: Instructions for fixing violations.

Each step from 1 to 4 builds the foundation for step 5, where the LLM, with the proper context, can effectively fix violations. The structured preparation ensures that the LLM has all the information it needs to address code issues with precision.

Refining the context for LLM fixes

To understand how our system improves code fixes, let’s consider a specific violation flagged by Pylint. Say we receive a message that there’s a violation on line 60 of our code file block_listed_name.py:

{
  "type": "convention",
  "module": "block_listed_name",
  "obj": "do_front",
  "line": 60,
  "column": 4,
  "endLine": 60,
  "endColumn": 7,
  "path": "cloned_repo/naming_conventions/block_listed_name.py",
  "symbol": "disallowed-name",
  "message": "Disallowed name \"foo\"",
  "message-id": "C0104"
}

From this Pylint violation, we know that the variable foo is a disallowed name. However, if we tried to ask the LLM to fix this issue based solely on this snippet of information, the response wouldn’t be as effective. Why? The LLM lacks the surrounding context — the full picture of the function in which this violation occurs.

This is where indexing the codebase becomes essential

Because we’ve mapped out the codebase, we can now ask the LLM to query the index and retrieve the surrounding code that includes the do_front function. The LLM can even generate the SQL query for us, thanks to its knowledge of the database schema. Once we’ve retrieved the full function definition, the LLM can work with a more complete view of the problem:

def do_front(front_filename, back_filename):
   """
   Front strategy: loop over front image,
   detect blue pixels there,
   substitute in pixels from back.
   Return changed front image.
   """
   foo = SimpleImage(front_filename)
   back = SimpleImage(back_filename)
   for y in range(foo.height):xc
       for x in range(foo.width):
           pixel = foo.get_pixel(x, y)
           # Detect blue pixels in front and replace with back pixels
           if pixel[2] > 2 * max(pixel[0], pixel[1]):
               back_pixel = back.get_pixel(x, y)
               foo.set_pixel(x, y, back_pixel)
   return foo

Now that the LLM can see the whole function, it’s able to propose a more meaningful fix. Here’s what it suggests after querying the indexed codebase and running the fix:

def do_front(front_filename, back_filename):
 """
    Front strategy: loop over front image,
 detect blue pixels there,
    substitute in pixels from back.
    Return changed front image.
    """
    front_image = SimpleImage(front)
    back_image = SimpleImage(back_filename)
    for y in range(front_image.height):
        for x in range(front_image.width            pixel = front_image.get_pixel(x y)
            # Detect blue pixels in front and replace with back pixels
            if pixel[2 >  * max(pixel[0 pixel[1]):
                back_pixel = back_image.get_pixel(x,)
                front_image.set_pixel(x,, back_pixel)
    return front_image

Here, the variable foo has been replaced with the more descriptive front_image, making the code more readable and understandable. The key step was providing the LLM with the correct level of detail — the top-level range — instead of just a single line or violation message. With the right context, the LLM’s ability to fix code becomes much more effective, which ultimately streamlines the development process.

Remember, all of this information is retrieved and indexed by the LLM itself through the prompts we’ve set up. Through this series of prompts, we’ve reached a point where the assistant has a comprehensive understanding of the codebase. 

At this stage, not only can I ask for a fix, but I can even ask questions like “what’s the violation at line 60 in naming_conventions/block_listed_name.py?” and the assistant responds with:

On line 60 of naming_conventions/block_listed_name.py, there's a violation: Disallowed name 'foo'. The variable name 'foo' is discouraged because it doesn't convey meaningful information about its purpose.

Although Pylint has been our focus here, this approach points to a new conversational way to interact with many tools that map code to issues. By integrating LLMs with containerized tools through architectures like the Docker prompt runner, we can enhance various aspects of the development workflow.

We’ve learned that combining tool integration, cognitive preparation of the LLM, and a seamless workflow can significantly improve the development experience. This integration allows an LLM to use tools to directly help while developing, and while Pylint has been the focus here, this also points to a new conversational way to interact with many tools that map code to issues.

To follow along with this effort, check out the GitHub repository for this project.

For more on what we’re doing at Docker, subscribe to our newsletter.

Learn more

Using an AI Assistant to Read Tool Documentation

Par : Docker Labs
23 septembre 2024 à 13:41

This ongoing Docker Labs GenAI series explores the exciting space of AI developer tools. At Docker, we believe there is a vast scope to explore, openly and without the hype. We will share our explorations and collaborate with the developer community in real-time. Although developers have adopted autocomplete tooling like GitHub Copilot and use chat, there is significant potential for AI tools to assist with more specific tasks and interfaces throughout the entire software lifecycle. Therefore, our exploration will be broad. We will be releasing software as open source so you can play, explore, and hack with us, too.

Using new tools on the command line can be frustrating. Even if we are confident that we’ve found the right tool, we might not know how to use it.

Telling an agent to RT(F)M

A typical workflow might look something like the following.

  • Install tool.
  • Read the documentation.
  • Run the command.
  • Repeat.

Can we improve this flow using LLMs?

2400x1260 docker labs genai

Install tool

Docker provides us with isolated environments to run tools. Instead of requiring that commands be installed, we have created minimal Docker images for each tool so that using the tool does not impact the host system. Leave no trace, so to speak.

Read the documentation

Man pages are one of the ways that authors of tools ship content about how to use that tool. This content also comes with standard retrieval mechanisms (the man tool). A tool might also support a command-line option like --help. Let’s start with the idealistic notion that we should be able to retrieve usage information from the tool itself.

In this experiment, we’ve created two entry points for each tool. The first entry point is the obvious one. It is a set of arguments passed directly to a command-line program. The OpenAI-compatible description that we generate for this entry point is shown below. We are using the same interface for every tool.

{"name": "run_my_tool",
   "description": "Run the my_tool command.",
   "parameters":
   {"type": "object",
    "properties":
    {"args":
     {"type": "string",
      "description": "The arguments to pass to my_tool"}}},
   "container": {"image": "namespace/my_tool:latest"}}

The second entrypoint gives the agent the ability to read the man page and, hopefully, improve its ability to run the first entrypoint. The second entrypoint is simpler, because it only does one thing (asks a tool how to use it).

{"name": "my_tool_manual",
   "description": "Read the man page for my_tool",
   "container": {"image": "namespace/my_tool:latest", "command": ["man"]}}

Run the command

Let’s start with a simple example. We want to use a tool called qrencode to generate a QR code for a link. We have used our image generation pipeline to package this tool into a minimal image for qrencode. We will now pass this prompt to a few different LLMs; we are using LLMs that have been trained for tool calling (e.g., GPT 4, Llama 3.1, and Mistral). Here’s the prompt that we are testing:

Generate a QR code for the content https://github.com/docker/labs-ai-tools-for-devs/blob/main/prompts/qrencode/README.md. Save the generated image to qrcode.png.
If the command fails, read the man page and try again.

Note the optimism in this prompt. Because it’s hard to predict what different LLMs have already seen in their training sets, and many command-line tools use common names for arguments, it’s interesting to see what LLM will infer before adding the man page to the context.

The output of the prompt is shown below. Grab your phone and check it out.

Black and white QR code generated by AI assistant.
Figure 1: Content QR code generated by AI assistant.

Repeat

When an LLM generates a description of how to run something, it will usually format that output in such a way that it will be easy for a user to cut and paste the response into a terminal:

qrencode -o qrcode.png 'my content'

However, if the LLM is generating tool calls, we’ll see output that is instead formatted to be easier to run:

[{"function": {"arguments": "{
  \"args\": \"-o qrcode.png 'my content'\"
}"
               "name": "qrencode"}
  "id": "call_Vdw2gDFMAwaEUMgxLYBTg8MB"}]

We respond to this by spinning up a Docker container.

Running the tool as part of the conversation loop is useful even when the command fails. In Unix, there are standard ways to communicate failures. For example, we have exit codes, and stderr streams. This is how tools create feedback loops and correct our behavior while we’re iterating at the terminal. This same mechanism can be used in a conversation loop involving an LLM.

To illustrate, here is another simple example. We’ll try running a tool that writes ASCII art with the following prompt.

Write ascii art with the message "Docker" using the font "helvetica".  Read the man page for figlet if you detect any errors and then try again.

In our test, this did fail. However, it also described the apparent issue on the stderr output stream.

Error: error: could not load font helvetica

By including this message in the conversation loop, the assistant can suggest different courses of action. Different LLMs produced different results here. For example, Llama 3.1 gives instructions for how to install the missing font. On the other hand, GPT 4 re-ran the command, but only after having made the “executive” decision to try a different font.

I'm sorry, it seems the font Helvetica is not available. Let's try it with the default font.

Here is the output of the figlet command with the default font (term): 

 ____             _             
|   \    _       | | _____ _ 
| | | |/  \ / _| |/ /  \ '_|
| |_| | (_) | (__|   <  __/ |   
|____/ \___/ \___|_|\_\___|_|

We are very early in understanding how to take advantage of this apparent capacity to try different approaches. But this is another reason why quarantining these tools in Docker containers is useful. It limits their blast radius while we encourage experimentation.

Results

We started by creating a pipeline to produce minimal Docker images for each tool. The set of tools was selected based on whether they have outputs useful for developer-facing workflows. We continue to add new tools as we think of new use cases. The initial set is listed below.

gh pylint commitlint scalafix gitlint yamllint checkmake gqlint sqlint golint golangci-lint hadolint markdownlint-cli2 cargo-toml-lint ruff dockle clj-kondo selene tflint rslint yapf puppet-lint oxlint kube-linter csslint cpplint ansible-lint actionlint black checkov jfmt datefmt rustfmt cbfmt yamlfmt whatstyle rufo fnlfmt shfmt zprint jet typos docker-ls nerdctl diffoci dive kompose git-test kubectl fastly infracost sops curl fzf ffmpeg babl unzip jq graphviz pstree figlet toilet tldr qrencode clippy go-tools ripgrep awscli2 azure-cli luaformatter nixpkgs-lint hclfmt fop dnstracer undocker dockfmt fixup_yarn_lock github-runner swiftformat swiftlint nix-linter go-critic regal textlint formatjson5 commitmsgfmt

There was a set of initial problems with context extraction.

Missing manual pages

Only about 60% of the tools we selected have man pages. However, even in those cases, there are usually other ways to get help content. The following steps show the final procedure we used:

  • Try to run the man page.
  • Try to run the tool with the argument --help.
  • Try to run the tool with the argument -h.
  • Try to run the tool with --broken args and then read stderr.

Using this procedure, every tool in the list above eventually produced documentation.

Long manual pages

Limited context lengths impacted some of the longer manual pages, so it was still necessary to employ standard RAG techniques to summarize verbose man pages. Our tactic was to focus on descriptions of command-line arguments and sections that had sample usage. These had the largest impact on the quality of the agent’s output. The structure of Unix man pages helped with the chunking, because we were able to rely on standard sections to chunk the content.

Subcommands

For a small set of tools, it was necessary to traverse a tree of help menus. However, these were all relatively popular tools, and the LLMs we deployed already knew about this command structure. It’s easy to check this out for yourself. Ask an LLM, for example: “What are the subcommands of Git?” or “What are the subcommands of Docker?” Maybe only popular tools get big enough that they start to be broken up into subcommands.

Summary

We should consider the active role that agents can play when determining how to use a tool. The Unix model has given us standards such as man pages, stderr streams, and exit codes, and we can take advantage of these conventions when asking an assistant to learn a tool. Beyond distribution, Docker also provides us with process isolation, which is useful when creating environments for safe exploration.

Whether or not an AI can successfully generate tool calls may also become a metric for whether or not a tool has been well documented.

To follow along with this effort, check out the GitHub repository for this project.

Learn more

How to Fix ESLint Violations with AI Assistance

Par : Docker Labs
26 août 2024 à 13:10

This ongoing Docker Labs GenAI series will explore the exciting space of AI developer tools. At Docker, we believe there is a vast scope to explore, openly and without the hype. We will share our explorations and collaborate with the developer community in real time. Although developers have adopted autocomplete tooling like GitHub Copilot and use chat, there is significant potential for AI tools to assist with more specific tasks and interfaces throughout the entire software lifecycle. Therefore, our exploration will be broad. We will be releasing things as open source so you can play, explore, and hack with us, too.

In a previous article in this series, we discussed linters, and we talked about running ESLint with an AI assistant. In this post, we will cover AI-assisted violation resolutions. 

2400x1260 docker labs genai

Before an AI assistant can take action on violations via the editor or Git (Figure 1), we first need to answer the question: Can an LLM generate resolutions for ESLint violations with the right knowledge and tools?

 Illustration that places this article in the context of using AI to fix violations found by ESLint.
Figure 1: Fixing ESLint violations.
Fix any lint violations you can in my project.

ESLint violations

To resolve a violation, the LLM needs information about the violation from the linter, and some context about the source code causing it. A level of human supervision may also be necessary. We want to optimize to shrink context, because models both limit context windows and yield better results with less context. This makes us wonder: “What is the minimum amount of context and supervision necessary to resolve a lint violation?”

For example, without human instruction, our assistant can’t know how to balance our parentheses:

// export const dockerfileRegex = new RegExp('(.*\\.?Dockerfile', 'i');
// Goal: new RegExp('(.*)\\.?Dockerfile', 'i');

Your `dockerfileRegex` regular expression is currently unterminated. This means the group you started at `(.*\\.?Dockerfile` doesn't have an ending bracket. Here is a fixed version of it:
```typescript
export const dockerfileRegex = new RegExp('(.*\\.?Dockerfile)', 'i');
```
I added a ")" to close the group.

Focusing on certain violations

We want to narrow the list of ESLint rules to violations the LLM can help with.

In Figure 2, we have compiled every ESLint rule that:

  • Is recommended
  • Is not auto-fixable by ESLint itself

And we want rules that:

  • Do not require supervision to make reasonable fixes.
Text list showing Context and Supervision requirements (for example, "Do we need source code to make the fix?") to help identify groups of violations.
Screenshot showing text and a table specifying rules for violations that LLM can help with, including Violation, Context, and Supervision.
Figure 2: Violations that the LLM can help with.

This context yields four total groups of violations:

Group 1 (No context needed from the surrounding source code or supervision needed.) Scripts can be applied to fix these violations.

Group 2 (No context needed from the surrounding source code, but these might be mistakes that necessitate the LLM to evaluate some of the code.) LLM can generate scripts to resolve these violations, but we would be assuming violations are mistakes. There are some violations that the LLM can evaluate on its own.

Group 3 (Context is needed from surrounding source code, but no supervision is necessary.) This is the best opportunity for our LLM to provide help. We can use tools to pull the right context in.

Group 4 (Context is needed from surrounding source code and supervision might be needed.)

  • Invalid Regex
  • Unsafe optional chaining
  • Constant condition

Depends a lot on the exact situation, but LLMs may be useful?

Thankfully, nearly all the violations could have reasonable fixes applied without supervision. These are the violations that we will focus on.

Initial prompts

First, we create the prompts to attempt to fix ESLint violations.

You are an AI assistant who specializes in resolving lint violations in projects. Use the tools available to quickly take action and be very brief.
1. Run linter.
2. Evaluate total violations.
 // What to do?

Unfortunately, we run into a roadblock when it comes to learning about lint violations from our ESLint tool. When using summary output, we don’t have enough information to know what we’re fixing. However, when using JSON output, we found that as few as 100 violations in a project caused ESLint to send over 10,000 characters over standard out. That would be a problem since many models at current limit us to 4-8k tokens. We need a way to persist this large output but without consuming tokens.

Artifacts

While we want to use ESLint, it can easily balloon an AI conversation past the model’s context size. To address this, we modified the ESLint tool to write eslint.json to a new ephemeral Docker volume. Reading and writing to this volume serves as another conversation between tools, but sandboxed away from the LLM’s context-sensitive function call output. 

We added tools to consume the ESLint artifact in different ways depending on the number of violations summarized.

- name: parse_lint_results
  description: Loads lint violations grouped by type.
  parameters:
    type: object
      properties:
        outputLevel:
   	  type: string
   	  description: Supports condensed or complaints
  container:
    image: vonwig/read_eslint

Now we can use this tool to finish our prompt.

You are an AI assistant who specializes in resolving lint violations in projects. Use the tools available to quickly take action and be very brief.
1. Run lint. // Will write /thread/eslint.json
2. Evaluate total violations. // Will read /thread/eslint.json
<10 violations: Parse output with complaints output.
10+ violations: Parse output with condensed output.
3. Fix the violations using the following steps:
## Condensed:
{>fixing}

A user prompt of:

1. Get the line Use read_eslint with the `path` arg to get all of the violations for a file.
2. Make the correction Respond in the following format:

```json
{
"start": [1, 4],
"end": [2, 4],
"edit": "Lorem ipsum"
}
```

Once you have fixed one file, move on to the next.
You are able to fix the following violations:
no-async-promise-executor
... 

yields:

The violation is located in the file src/utils/promiseUtils.ts at line 30-31. The current code is:
```javascript
return new Promise(async (resolve, reject) => {
  ...
});
```

To resolve the no-async-promise-executor violation, remove the async keyword from the `Promise` executor function. The corrected code would look like:

```javascript
return new Promise((resolve, reject) => {
  ...
});
```

Unfortunately, we’re still not seeing a good result. Without the violating context from the code, again, our assistant can’t provide an actionable fix. So we need to make a tool to get that.

Tree Sitter

Without the right tools, the LLM is, at best, vague and helpful — and at worse quite liable to hallucinate. We need tools to let the LLM be actionable here. Tree-sitter is a popular open source tool we can use to parse a variety of languages into abstract syntax trees (or ASTs). 

The powerful part of Tree-sitter that we want to take advantage of is the community of grammar authors providing support for almost any language our assistant could encounter. We have Dockerized this tool to get context given a file path and line number.

Results

We have trimmed debug finish responses from the payload but kept function calls.

## ROLE assistant
...({:function {:name run_lint, :arguments {}}, :id call_MaK7CGpOISktz1fZP3GS7m4H})

## ROLE assistant
.........................({:function {:name run-eslint, :arguments {
  "args": ".",
"version": 8,
"outputLevel": "summary"
}}, :id call_RHX2hztWvghxbyZx5cvSXgMU})

## ROLE tool (run-eslint)
Running npx with args: eslint@8 --format json .
Peparing output
Found 41 violations in 271 files.

## ROLE tool (run_lint)
I ran ESLint (version 8) on your entire project. Here are the results:

- 271 files were checked for violations
- Out of these, 41 files had one or more violations

## ROLE assistant
.............({:function {:name parse_lint_results, :arguments {
  "outputLevel": "condensed"
}}, :id call_sYHP8tXuKbXGaXdNCdO3W5kU})

## ROLE tool (parse_lint_results)
{   "@typescript-eslint/no-floating-promises": [ "src/commands/help.ts",
"src/commands/registerWorkspaceCommand.ts"   ],   "@typescript-eslint/no-explicit-any": [ "src/commands/registerLocalCommand.ts"   ],   "@typescript-eslint/naming-convention": [ "src/constants.ts"   ],   "eqeqeq": [ "src/debugging/DockerDebugConfigurationProvider.ts", "src/debugging/DockerServerReadyAction.ts", "src/runtimes/files/ContainerFilesProvider.ts", "src/tree/LocalRootTreeItemBase.ts"   ],   "@typescript-eslint/no-unused-vars": [ "src/extension.ts", "src/scaffolding/wizard/netCore/NetCoreGatherInformationStep.ts"   ],   "@typescript-eslint/semi": [ "src/utils/registryExperience.ts"   ] }

## ROLE assistant
...............({:function {:name violations_for_file, :arguments {
  "path": "src/commands/help.ts"
}}, :id call_fAN5kTrXndaNs7Ix4iH51E4T})

## ROLE tool (violations_for_file)
Getting eslint.json for path: src/commands/help.ts
ESLint violations for src/commands/help.ts:
{ "filePath": "src/commands/help.ts", "messages": [ { "ruleId": "@typescript-eslint/no-floating-promises", "severity": 1, "message": "Promises must be awaited, end with a call to .catch, end with a call to .then with a rejection handler or be explicitly marked as ignored with the void operator.", "line": 35, "column": 5, "nodeType": "ExpressionStatement", "messageId": "floatingVoid", "endLine": 35, "endColumn": 100] }

## ROLE assistant
......................({:function {:name run_tree_sitter, :arguments {
  "path": "src/commands/help.ts",
  "line": 35
}}, :id call_cKnNRQs5hmMsTszTfDnwfK12})

## ROLE tool (run_tree_sitter)
{
  offending_line: '}',
  line_node: SyntaxNode {
type: },
startPosition: {row: 35, column: 0},
endPosition: {row: 35, column: 1},
childCount: 0,
  },
  parent: SetNode {
type: set,
startPosition: {row: 33, column: 45},
endPosition: {row: 35, column: 1},
childCount: 4,
  },
  parent_text: '{\n' +
" vscode.env.openExternal(vscode.Uri.parse('https://github.com/microsoft/vscode-docker/issues'));\n" +
'}'
}

## ROLE assistant
The violation on line 35 of the `src/commands/help.ts` file is due to a floating promise. To resolve this, add the void operator to the beginning of the line as below:
```js
void vscode.env.openExternal(vscode.Uri.parse('https://github.com/microsoft/vscode-docker/issues'));
```.

This result demonstrates that the LLM can orchestrate a small code improvement using the right tools.

Failures

Unfortunately, it terminates after coming to the end of the first violation rather than continuing on to the next. This seems to be difficult to change, even trying two other combinations of prompts failed to get a loop going.

Fix any lint violations you can using the tools provided.
After resolving one violation, move onto the next.
Once you have fixed one file, move on to the next.

Successful prompt

However, what we did find was that specifying the lint violation to focus on did work:

Please only fix no-unused-vars

yields:

## ROLE assistant
The violation in the file "src/extension.ts" is a declared variable 'unuseVar' at line 41, which is not used anywhere. The fix would be the removal of that line..nil

Figure 3 lists a few interesting violations we tested.

Screenshot of a table showing results for violations tested, with columns for Violation, Result, and Feedback.
Figure 3: Violations tested.

Overall, we can see that our assistant, when given the right tools to find and fix violations, can make good code change suggestions for even difficult lint violations. We welcome you to check out the code and test with different violations that we didn’t cover.

Summary

We continue to investigate the use of tools for gathering context and improving suggestions. In this installment, we have looked at how AI assistants can provide significant value to developers by:

  • Using a linter to learn about violations in a TS project without Node, NPM, or ESLint.
  • Leveraging an ephemeral volume to store large context without using tokens.
  • Using Tree_sitter to load precise, relevant code context from a project.
  • Generating fixes for violations in a TS project.

As always, feel free to follow along in our new public repo and please reach out. Everything we’ve discussed in this blog post is available for you to try out on your own projects.

Learn more

Using Docker GenAI Stack with GPU for Generative AI Models

Par : Ajeet Raina
2 mars 2024 à 04:13
Introducing the Docker GenAI Stack, a set of open-source tools that simplify the development and deployment of Generative AI applications. With components like Langchain, Docker, Neo4j, and Ollama, it offers faster development, simplified deployment, improved efficiency, and accessibility. Learn how using GPUs with the GenAI Stack provides faster training, increased model capacity, improved resource efficiency, and simplified development and deployment. Consider your specific use case before deciding between CPU-only or GPU-accelerated setup. Get started with the prerequisites.

How to Install and Run Ollama with Docker: A Beginner’s Guide

Par : Ajeet Raina
20 décembre 2023 à 03:52
Let’s create our own local ChatGPT. In the rapidly evolving landscape of natural language processing, Ollama stands out as a game-changer, offering a seamless experience for running large language models locally. If you’re eager to harness the power of Ollama and Docker, this guide will walk you through the process step by step. Why Ollama […]

Generative AI: What It Is, Applications, and Impact

31 octobre 2023 à 05:12
Generative AI is a type of artificial intelligence that can create new and original content, chat responses, designs, synthetic data, or even deepfakes. It’s particularly valuable in creative fields and for novel problem-solving, as it can autonomously generate many types of new outputs. Generative AI relies on neural network techniques such as transformers, GANs, and […]
❌
❌